A SortedList object internally maintains two arrays to store the elements of the list; that is, one array for the keys and another array for the associated values. Each element is a key/value pair that can be accessed as a DictionaryEntry object. A key cannot be null, but a value can be.
The capacity of a SortedList object is the number of elements the SortedList can hold. As elements are added to a SortedList, the capacity is automatically increased as required through reallocation. The capacity can be decreased by calling TrimToSize or by setting the Capacity property explicitly.
.NET Framework only: For very large SortedList objects, you can increase the maximum capacity to 2 billion elements on a 64-bit system by setting the enabled attribute of the <gcAllowVeryLargeObjects> configuration element to true in the run-time environment.
The elements of a SortedList object are sorted by the keys either according to a specific IComparer implementation specified when the SortedList is created or according to the IComparable implementation provided by the keys themselves. In either case, a SortedList does not allow duplicate keys.
The index sequence is based on the sort sequence. When an element is added, it is inserted into SortedList in the correct sort order, and the indexing adjusts accordingly. When an element is removed, the indexing also adjusts accordingly. Therefore, the index of a specific key/value pair might change as elements are added or removed from the SortedList object.
Operations on a SortedList object tend to be slower than operations on a Hashtable object because of the sorting. However, the SortedList offers more flexibility by allowing access to the values either through the associated keys or through the indexes.
Elements in this collection can be accessed using an integer index. Indexes in this collection are zero-based.
No comments:
Post a Comment