April 5, 2021
Domain-driven design (DDD) is the concept that the structure and language of software code (class names, class methods, class variables) should match the business domain. For example, if a software processes loan applications, it might have classes such as LoanApplication and Customer, and methods such as AcceptOffer and Withdraw.
DDD connects the implementation to an evolving model.[1]
Domain-driven design is predicated on the following goals:
- placing the project's primary focus on the core domain and domain logic;
- basing complex designs on a model of the domain;
- initiating a creative collaboration between technical and domain experts to iteratively refine a conceptual model that addresses particular domain problems.
The term was coined by Eric Evans in his book of the same title.
Relationship to other ideas[edit]
- Object-oriented analysis and design
- Although, in theory, the general idea of DDD need not be restricted to object-oriented approaches, in practice, DDD seeks to exploit the advantages that object-oriented techniques make possible. These include entities/aggregate roots as receivers of commands/method invocations and the encapsulation of state within foremost aggregate roots and on a higher architectural level, bounded contexts.
- Model-driven engineering (MDE) and Model-driven architecture (MDA)
- While DDD is compatible with MDA/MDE (where MDE can be regarded as a superset of MDA) the intent of the two concepts is somewhat different. MDA is concerned more with the means of translating a model into code for different technology platforms than with the practice of defining better domain models. The techniques provided by MDE (to model domains, to create DSLs to facilitate the communication between domain experts and developers,...) facilitate the application of DDD in practice and help DDD practitioners to get more out of their models. Thanks to the model transformation and code generation techniques of MDE, the domain model can be used not only to represent the domain but also to generate the actual software system that will be used to manage it. This picture shows a possible representation of DDD and MDE combined.
- Plain Old Java Objects (POJOs) and Plain Old CLR Objects (POCOs)
- POJOs and POCOs are technical implementation concepts, specific to Java and the .NET Framework respectively. However, the emergence of the terms POJO and POCO reflect a growing view that, within the context of either of those technical platforms, domain objects should be defined purely to implement the business behaviour of the corresponding domain concept, rather than be defined by the requirements of a more specific technology framework.
- The naked objects pattern
- Based on the premise that if you have a good enough domain model, the user interface can simply be a reflection of this domain model; and that if you require the user interface to be a direct reflection of the domain model, then this will force the design of a better domain model.[4]
- Domain-specific modeling (DSM)
- DSM is DDD applied through the use of Domain-specific languages.
- Domain-specific language (DSL)
- DDD does not specifically require the use of a DSL, though it could be used to help define a DSL and support methods like domain-specific multimodeling.
- Aspect-oriented programming (AOP)
- AOP makes it easy to factor out technical concerns (such as security, transaction management, logging) from a domain model, and as such makes it easier to design and implement domain models that focus purely on the business logic.
- Command Query Responsibility Segregation (CQRS)
- CQRS is an architectural pattern for separation of reads from writes, where the former is a Query and the latter is a Command. Commands mutate state and are hence approximately equivalent to method invocation on aggregate roots/entities. Queries read state but do not mutate it. CQRS is a derivative architectural pattern from the design pattern called Command and Query Separation (CQS) which was coined by Bertrand Meyer. While CQRS does not require DDD, domain-driven design makes the distinction between commands and queries explicit, around the concept of an aggregate root. The idea is that a given aggregate root has a method that corresponds to a command and a command handler invokes the method on the aggregate root. The aggregate root is responsible for performing the logic of the operation and yielding either a number of events or a failure (exception or execution result enumeration/number) response OR (if Event Sourcing (ES) is not used) just mutating its state for a persister implementation such as an ORM to write to a data store, while the command handler is responsible for pulling in infrastructure concerns related to the saving of the aggregate root's state or events and creating the needed contexts (e.g., transactions).
- Event Sourcing (ES)
- An architectural pattern which warrants that your entities (as per Eric Evans' definition) do not track their internal state by means of direct serialization or O/R mapping, but by means of reading and committing events to an event store. Where ES is combined with CQRS and DDD, aggregate roots are responsible for thoroughly validating and applying commands (often by means of having their instance methods invoked from a Command Handler), and then publishing a single or a set of events which is also the foundation upon which the aggregate roots base their logic for dealing with method invocations. Hence, the input is a command and the output is one or many events which are transactionally (single commit) saved to an event store, and then often published on a message broker for the benefit of those interested (often the views are interested; they are then queried using Query-messages). When modeling your aggregate roots to output events, you can isolate the internal state even further than would be possible when projecting read-data from your entities, as is done in standard n-tier data-passing architectures. One significant benefit from this is that tooling such as axiomatic theorem provers (e.g., Microsoft Contracts and CHESS[5]) are easier to apply, as the aggregate root comprehensively hides its internal state. Events are often persisted based on the version of the aggregate root instance, which yields a domain model that synchronizes in distributed systems around the concept of optimistic concurrency.
No comments:
Post a Comment