Saturday, April 3, 2021

System design: Chris richardson: 4.3 Communication Patterns Inter Process Communication Event Driven Microservices | Embracing the Differences : Inside the Netflix API Redesign

April 3, 2021

Here is the link. 

As I discussed in my recent blog post on ProgrammableWeb.com, Netflix has found substantial limitations in the traditional one-size-fits-all (OSFA) REST API approach. As a result, we have moved to a new, fully customizable API. The basis for our decision is that Netflix’s streaming service is available on more than 800 different device types, almost all of which receive their content from our private APIs. In our experience, we have realized that supporting these myriad device types with an OSFA API, while successful, is not optimal for the API team, the UI teams or Netflix streaming customers. And given that the key audiences for the API are a small group of known developers to which the API team is very close (i.e., mostly internal Netflix UI development teams), we have evolved our API into a platform for API development. Supporting this platform are a few key philosophies, each of which is instrumental in the design of our new system. These philosophies are as follows:

  • Embrace the Differences of the Devices
  • Separate Content Gathering from Content Formatting/Delivery
  • Redefine the Border Between “Client” and “Server”
  • Distribute Innovation

I will go into more detail below about each of these, including our implementation and what the benefits (and potential detriments) are of this approach. However, each philosophy reflects our top-level goal: to provide whatever is best for the Netflix customer. If we can improve the interaction between the API and our UIs, we have a better chance of making more of our customers happier.

Embrace the Differences of the Devices

The key driver for this redesigned API is the fact that there are a range of differences across the 800+ device types that we support. Most APIs (including the REST API that Netflix has been using since 2008) treat these devices the same, in a generic way, to make the server-side implementations more efficient. And there is good reason for this approach. Providing an OSFA API allows the API team to maintain a solid contract with a wide range of API consumers because the API team is setting the rules for everyone to follow.

While effective, the problem with the OSFA approach is that its emphasis is to make it convenient for the API provider, not the API consumer. Accordingly, OSFA is ignoring the differences of these devices; the differences that allow us to more optimally take advantage of the rich features offered on each. To give you an idea of these differences, devices may differ on:

  • Memory capacity or processing power, potentially modifying how much content it can manage at a given time
  • Requirements for distinct markup formats and broader device proliferation increases the likelihood of this
  • Document models, some devices may perform better with flatter models, others with more hierarchical
  • Screen real estate which may impact the content elements that are needed
  • Document delivery, some performing better with bits streamed across HTTP rather than delivered as a complete document
  • User interactions, which could influence the metadata fields, delivery method, interaction model, etc.

Our new model is designed to cut against the OSFA paradigm and embrace the differences across devices while supporting those differences equally. To achieve this, our API development platform allows each UI team to create customized endpoints. So the request/response model can be optimized for each team’s UIs to account for unique or divergent device requirements. To support the variability in our request/response model, we need a different kind of architecture, which takes us to the next philosophy…

...

Of course, one drawback to this is that UI teams are often more skilled in technologies like HTML5, CSS3, JavaScript, etc. In this system, they now need to learn server-side technologies and techniques. So far, however, this has been a relatively small issue, especially since our engineering culture is to hire very strong, senior-level engineers who are adaptable, curious and passionate about learning and implementing these kinds of solutions. Another concern is that because the UI teams are implementing server-side adapters, they have the potential to bring down the servers through infinite loops or other processes that are resource intensive. To offset this, we are working on scrubbing engines that will hopefully minimize the likelihood of such mistakes. That said, in the OSFA world, code on the device can just as easily DDOS the server, it is just potentially a bigger problem if it runs on the server.

No comments:

Post a Comment