Monday, April 19, 2021

System design: Cassandra - A Decentralized Structured Storage System

 April 19, 2021

Introduction

I like to go over the article again, highlight some contents to help me review. I need to look into more detail and learn better this time to prepare Facebook onsite in 2021. 

  1. Describe Cassandra - distributed storage system
  2. An infrastructure of hundreds of nodes - different data centers
  3. Cassandra system was designed to run on cheap commodity hardware and handle high write throughput while not sacrificing read efficiency
  4. being able to replicate data across data centers was key to keep search latencies down.
  5. Storage service - Backend - Facebook inbox search
  6. Amazon - Dynamo[6] is a storage system that is used by Amazon to store and retrieve user shopping carts
  7. Google - Bigtable[4] provides both structure and data distribution but relies on a distributed file system for its durability.
  8. scalable and robust solutions for load balancing, membership and failure detection, failure recovery, replica synchronization, overload handling, state transfer, concurrency and job scheduling, request marshalling, request routing, system monitoring and alarming, and configuration management.
    1. load balancing, 
    2. membership and failure detection, 
    3. failure recovery, 
    4. replica synchronization, 
    5. overload handling, 
    6. state transfer, 
    7. concurrency and job scheduling, 
    8. request marshalling, 
    9. request routing, 
    10. system monitoring and alarming, 
    11. and configuration management.
  9. the core distributed systems techniques used in Cassandra: partitioning, replication, membership, failure handling and scaling.
    1. partitioning, 
    2. replication, 
    3. membership, 
    4. failure handling and scaling.


Paper - Here is the link. 

ABSTRACT 

Cassandra is a distributed storage system for managing very large amounts of structured data spread out across many commodity servers, while providing highly available service with no single point of failure. Cassandra aims to run on top of an infrastructure of hundreds of nodes (possibly spread across different data centers). At this scale, small and large components fail continuously. The way Cassandra manages the persistent state in the face of these failures drives the reliability and scalability of the software systems relying on this service. While in many ways Cassandra resembles a database and shares many design and implementation strategies therewith, Cassandra does not support a full relational data model; instead, it provides clients with a simple data model that supports dynamic control over data layout and format. Cassandra system was designed to run on cheap commodity hardware and handle high write throughput while not sacrificing read efficiency.

1. INTRODUCTION 

Facebook runs the largest social networking platform that serves hundreds of millions users at peak times using tens of thousands of servers located in many data centers around the world. There are strict operational requirements on Facebook’s platform in terms of performance, reliability and efficiency, and to support continuous growth the platform needs to be highly scalable. Dealing with failures in an infrastructure comprised of thousands of components is our standard mode of operation; there are always a small but significant number of server and network components that are failing at any given time. As such, the software systems need to be constructed in a manner that treats failures as the norm rather than the exception. To meet the reliability and scalability needs described above Facebook has developed Cassandra

Cassandra uses a synthesis of well known techniques to achieve scalability and availability. Cassandra was designed to fulfill the storage needs of the Inbox Search problem. Inbox Search is a feature that enables users to search through their Facebook Inbox. At Facebook this meant the system was required to handle a very high write throughput, billions of writes per day, and also scale with the number of users. Since users are served from data centers that are geographically distributed, being able to replicate data across data centers was key to keep search latencies down. Inbox Search was launched in June of 2008 for around 100 million users and today we are at over 250 million users and Cassandra has kept up the promise so far. Cassandra is now deployed as the backend storage system for multiple services within Facebook.

This paper is structured as follows. Section 2 talks about related work, some of which has been very influential on our design. Section 3 presents the data model in more detail. Section 4 presents the overview of the client API. Section 5 presents the system design and the distributed algorithms that make Cassandra work. Section 6 details the experiences of making Cassandra work and refinements to improve performance. In Section 6.1 we describe how one of the applications in the Facebook platform uses Cassandra. Finally Section 7 concludes with future work on Cassandra.

2. RELATED WORK 

Distributing data for performance, availability and durability has been widely studied in the file system and database communities. Compared to P2P storage systems that only support flat namespaces, distributed file systems typically support hierarchical namespaces. Systems like Ficus[14] and Coda[16] replicate files for high availability at the expense of consistency. Update conflicts are typically managed using specialized conflict resolution procedures. Farsite[2] is a distributed file system that does not use any centralized server. Farsite achieves high availability and scalability using replication. The Google File System (GFS)[9] is another distributed file system built for hosting the state of Google’s internal applications. GFS uses a simple design with a single master server for hosting the entire metadata and where the data is split into chunks and stored in chunk servers. However the GFS master is now made fault tolerant using the Chubby[3] abstraction. Bayou[18] is a distributed relational database system that allows disconnected operations and provides eventual data consistency. Among these systems, Bayou, Coda and Ficus allow disconnected operations and are resilient to issues such as network partitions and outages. These systems differ on their conflict resolution procedures. For instance, Coda and Ficus perform system level conflict resolution and Bayou allows application level resolution. All of them however, guarantee eventual consistency. Similar to these systems, Dynamo[6] allows read and write operations to continue even during network partitions and resolves update conflicts using different conflict resolution mechanisms, some client driven. Traditional replicated relational database systems focus on the problem of guaranteeing strong consistency of replicated data. Although strong consistency provides the application writer a convenient programming model, these systems are limited in scalability and availability [10]. These systems are not capable of handling network partitions because they typically provide strong consistency guarantees.

Dynamo[6] is a storage system that is used by Amazon to store and retrieve user shopping carts. Dynamo’s Gossip based membership algorithm helps every node maintain information about every other node. Dynamo can be defined as a structured overlay with at most one-hop request routing. Dynamo detects updated conflicts using a vector clock scheme, but prefers a client side conflict resolution mechanism. A write operation in Dynamo also requires a read to be performed for managing the vector timestamps. This is can be very limiting in environments where systems need to handle a very high write throughput. Bigtable[4] provides both structure and data distribution but relies on a distributed file system for its durability.

3. DATA MODEL 

A table in Cassandra is a distributed multi dimensional map indexed by a key. The value is an object which is highly structured. The row key in a table is a string with no size restrictions, although typically 16 to 36 bytes long. Every operation under a single row key is atomic per replica no matter how many columns are being read or written into. Columns are grouped together into sets called column families very much similar to what happens in the Bigtable[4] system. Cassandra exposes two kinds of columns families, Simple and Super column families. Super column families can be visualized as a column family within a column family.

Furthermore, applications can specify the sort order of columns within a Super Column or Simple Column family. The system allows columns to be sorted either by time or by name. Time sorting of columns is exploited by application like Inbox Search where the results are always displayed in time sorted order. Any column within a column family is accessed using the convention column_family : column and any column within a column family that is of type super is accessed using the convention column_family : super_column : column. A very good example of the super column family abstraction power is given in Section 6.1. Typically applications use a dedicated Cassandra cluster and manage them as part of their service. Although the system supports the notion of multiple tables all deployments have only one table in their schema.

4. API 

The Cassandra API consists of the following three simple methods. 

• insert(table, key, rowMutation) 

• get(table, key, columnName) 

• delete(table, key, columnName)

columnName can refer to a specific column within a column family, a column family, a super column family, or a column within a super column.

 5. SYSTEM ARCHITECTURE 

The architecture of a storage system that needs to operate in a production setting is complex. In addition to the actual data persistence component, the system needs to have the following characteristics; scalable and robust solutions for load balancing, membership and failure detection, failure recovery, replica synchronization, overload handling, state transfer, concurrency and job scheduling, request marshalling, request routing, system monitoring and alarming, and configuration management. Describing the details of each of the solutions is beyond the scope of this paper, so we will focus on the core distributed systems techniques used in Cassandra: partitioning, replication, membership, failure handling and scaling. All these modules work in synchrony to handle read/write requests. Typically a read/write request for a key gets routed to any node in the Cassandra cluster. The node then determines the replicas for this particular key. For writes, the system routes the requests to the replicas and waits for a quorum of replicas to acknowledge the completion of the writes. For reads, based on the consistency guarantees required by the client, the system either routes the requests to the closest replica or routes the requests to all replicas and waits for a quorum of responses.

5.1 Partitioning 

One of the key design features for Cassandra is the ability to scale incrementally. This requires, the ability to dynamically partition the data over the set of nodes (i.e., storage hosts) in the cluster. Cassandra partitions data across the cluster using consistent hashing [11] but uses an order preserving hash function to do so. In consistent hashing the output range of a hash function is treated as a fixed circular space or “ring” (i.e. the largest hash value wraps around to the smallest hash value). Each node in the system is assigned a random value within this space which represents its position on the ring. Each data item identified by a key is assigned to a node by hashing the data item’s key to yield its position on the ring, and then walking the ring clockwise to find the first node with a position larger than the item’s position. This node is deemed the coordinator for this key. The application specifies this key and the Cassandra uses it to route requests. Thus, each node becomes responsible for the region in the ring between it and its predecessor node on the ring. The principal advantage of consistent hashing is that departure or arrival of a node only affects its immediate neighbors and other nodes remain unaffected. The basic consistent hashing algorithm presents some challenges. First, the random position assignment of each node on the ring leads to non-uniform data and load distribution. Second, the basic algorithm is oblivious to the heterogeneity in the performance of nodes. Typically there exist two ways to address this issue: One is for nodes to get assigned to multiple positions in the circle (like in Dynamo), and the second is to analyze load information on the ring and have lightly loaded nodes move on the ring to alleviate heavily loaded nodes as described in [17]. Cassandra opts for the latter as it makes the design and implementation very tractable and helps to make very deterministic choices about load balancing.

5.2 Replication - 10:50 PM 

Cassandra uses replication to achieve high availability and durability. Each data item is replicated at N hosts, where N is the replication factor configured “per-instance”. Each key, k, is assigned to a coordinator node (described in the previous section). The coordinator is in charge of the replication of the data items that fall within its range. In addition to locally storing each key within its range, the coordinator replicates these keys at the N-1 nodes in the ring. Cassandra provides the client with various options for how data needs to be replicated. Cassandra provides various replication policies such as “Rack Unaware”, “Rack Aware” (within a datacenter) and “Datacenter Aware”. Replicas are chosen based on the replication policy chosen by the application. If certain application chooses “Rack Unaware” replication strategy then the non-coordinator replicas are chosen by picking N-1 successors of the coordinator on the ring. For “Rack Aware” and “Datacenter Aware” strategies the algorithm is slightly more involved. Cassandra system elects a leader amongst its nodes using a system called Zookeeper[13]. All nodes on joining the cluster contact the leader who tells them for what ranges they are replicas for and leader makes a concerted effort to maintain the invariant that no node is responsible for more than N-1 ranges in the ring. The metadata about the ranges a node is responsible is cached locally at each node and in a fault-tolerant manner inside Zookeeper - this way a node that crashes and comes back up knows what ranges it was responsible for. We borrow from Dynamo parlance and deem the nodes that are responsible for a given range the “preference list” for the range.

No comments:

Post a Comment