Wednesday, December 15, 2021

Hilbert space-filling curve | Hilbert curv

 The Hilbert curve (also known as the Hilbert space-filling curve) is a continuous fractal space-filling curve first described by the German mathematician David Hilbert in 1891,[1] as a variant of the space-filling Peano curves discovered by Giuseppe Peano in 1890.[2]

Because it is space-filling, its Hausdorff dimension is 2 (precisely, its image is the unit square, whose dimension is 2 in any definition of dimension; its graph is a compact set homeomorphic to the closed unit interval, with Hausdorff dimension 2).

The Hilbert curve is constructed as a limit of piecewise linear curves. The length of the th curve is , i.e., the length grows exponentially with , even though each curve is contained in a square with area .


Applications and mapping algorithms[edit]

Both the true Hilbert curve and its discrete approximations are useful because they give a mapping between 1D and 2D space that preserves locality fairly well.[4] This means that two data points which are close to each other in one-dimensional space are also close to each other after folding. The converse can't always be true.

Because of this locality property, the Hilbert curve is widely used in computer science. For example, the range of IP addresses used by computers can be mapped into a picture using the Hilbert curve. Code to generate the image would map from 2D to 1D to find the color of each pixel, and the Hilbert curve is sometimes used because it keeps nearby IP addresses close to each other in the picture.[5]

In an algorithm called Riemersma dithering, grayscale photograph can be converted to a dithered black-and-white image using thresholding, with the leftover amount from each pixel added to the next pixel along the Hilbert curve. Code to do this would map from 1D to 2D, and the Hilbert curve is sometimes used because it does not create the distracting patterns that would be visible to the eye if the order were simply left to right across each row of pixels.[6] Hilbert curves in higher dimensions are an instance of a generalization of Gray codes, and are sometimes used for similar purposes, for similar reasons. For multidimensional databases, Hilbert order has been proposed to be used instead of Z order because it has better locality-preserving behavior. For example, Hilbert curves have been used to compress and accelerate R-tree indexes[7] (see Hilbert R-tree). They have also been used to help compress data warehouses.[8][9]

Given the variety of applications, it is useful to have algorithms to map in both directions. In many languages, these are better if implemented with iteration rather than recursion. The following C code performs the mappings in both directions, using iteration and bit operations rather than recursion. It assumes a square divided into n by n cells, for n a power of 2, with integer coordinates, with (0,0) in the lower left corner, (n − 1, n − 1) in the upper right corner, and a distance d that starts at 0 in the lower left corner and goes to  in the lower-right corner. This is different from the animation shown above where the curve starts from upper left corner and terminates at upper right corner.



No comments:

Post a Comment